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TECHNICAL MEMORANDUM 1234

COMPUTATION OF THIN-WALLED PRISMATTC SHELIS®

By V. Z. Vlasov

1. Fundamental Assumptlions

We consider a prismatic shell consisting of a finite number of
narrow rectanguler plates and having in the cross—section a finite
number of closed contours (fig. 1(a)). We shall assume that the
rectangular plates composing the shell are rigidly Joined so that there
is no motion of eny kind of one plate relatlive to the others meeting
at a given connecting line. The position of a point on the middle
prismatic surface is considered to be defined by the coordinate z,
the distance to a certaln initial cross—section z = O, and the
coordinate 8 determining its position on the contour of the cross—
section.

Let the function u(z,s) represent a longitudinal displacement
of the point (z s) that is, a displacement in the dlrection of the
generator (positive in the direction of incressing z) and the
function v(z,s) represent a tangential displacement, that is, a
dlisplacement 1n the dlrection of the tangent to the contour of the
cross—section (positive in the direction of increasing s).

We shall represent these dlsplacements in the form of the sums:

m

; Uy (2 ), (s) (1 = 1,2,00., m) (1.1)

u(z,s)

v(z,s)

n ! .
Ei Vk(z)\lfk(s) (k = 1,2,00., n) (1.2)

where the functions U;(z) and Vi (z) depending only on =z are the
required functions and the functions pi(s) and vk(s) are subject to

& preliminsry choice. The magnitudes m and n will be explained
below. ‘

'Raschet Tonkostennikh Prismaticheskikh Obolochek." Prikladnaya
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We consider an elementary tranverse lamina cut out by the planes'
7z = constant and =z + dz = constant. Such a lamina will be regarded as
a plane system of rods, that is, a frame comsisting of closed contours.

Let us consider the deformed state of this lamina determined only
by the longitudinal displacements u(z,s). The plane contour of such an
elementary frame, while remaining on the prismatic surface of the shell,
goes over Into a space line that can be determined relative to the
initial section =z = constant for the chosen functions @;(s) by equa—
tion (1.1). We make the assumption that, in the case of the deformed
state determined only by the longitudinal displacements, the rectilinear
elements of the frame, starting from the plane =z = constant, remain
straight. Such an assumptlon is equivalent to the hypothesis of plane
sections assumed individually for each of the narrow rectangular plates
composing the given sl.ell. In thls case the position of an elementary
frame after deformation is entirely determined by the longitudlnal
displacements of its m Joints relative to the plane 2z = constant.
Hence the elementary frame can be consldered as a rod system possessing
relative to the longitudinal displacements m degrees of freedom.

We shall teke in equation (1.1) the required functions Uy(z),
Us(z), ..., Uy(z) as the longitudinal displacements of the m Joints
of an elementary frame. The functions @y(s), @,(8), ..., @ (s)

corresponding according to equation (1.1) to these displacements satisfy .
all the required conditions of the contlinuity of the longitudinal
displacements u(z,s) over the section z = constant.

Each of the functions ¢,;(s) for a choice of the required
magnitudes U;(z) thus has, %y the method here indicated, a very simple

geometrically evident expression; namely, it is different from zero only
on rectlilinear parts of the contour meeting at the Joint 1; wlthin the
1imits of each of these segments it 1s represented as a function of & by
a8 linear function of s and assumes a value equal to unlty at a point
colnciding with the 1th Joint, becoming zero at the other end point of

the glven segment. On all the remaining parts of the contour line the
function @;(s) will be identically equal to zero (fig. 2).

It 1s clear that the chosen method of constructing the functions ¢y(s)
for the assumed model is not the only one. For the required functions Ui(z)
there may be taken any m Independent magnltudes. To each aggregate
of m independent magnitudes Ui(z) will then correspond an aggregate
of m linearly independent functions @;(s) each of which will be

continuous over the entire multiply connected contour and on an individual
segment of the contour is represented by a linear graph. Thus, for
exsmple, if we wish in the first of the series (1.1) to separate initially
the longitudinal dlsplacements relative to the elementary computation of
the shell as a beam of a composite multiply connected cross-section on
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- the basis of the hypothesis of Bernoulli assumed for the entire section

z. = constant, we must, for three of the m possible displacements U;(z),
take the values Uji(z), Uo(z), and U3(z) determining the displacements

‘of the hinged model on the prismatic surface as a rigld plane system.

The functions @ (s), ®(s), and ¢3(s) corresponding to these magnitudes
are each linear functions of the cartesion coordinates x = x(s) and

y = y(8) of a point of the contour of the cross—section of the shell. _
The remaining terms of the series (1.1) for the function u(z,s) determine

a state of longitudinal displacements for which the cross-sections of

the shell, after deformation, do not remain plane. Retaining the terminology
adopted in our work on the general theory of thin—wulled rods (reference 1)
we shall denote the deviation from the law of plane cross—sectlons as
"deplanations" of cross—section.

The deplanation of a multiply connected shell is thus determined by
the m — 3 independent quantities Up(z), U5(z), eee, Up(z). These

magnitudes will be called the generalized coordinates of the deplanation,

In constructing the functions v,(s) (k =1,2,3, ..., n) entering

equation (1.2) for the transverse tangential displacement v(z,s) of a
point of the contour (z,s), we shall start from ths deformation of an
elementery trensverse lamina (fig. 1(a)) in ite plane =z = cmstant.
Considering this lamina as a rod system and assuming the elements of the
frame to be inextemsible we arrive at the result that the contour displace—
ment v(z,s) may be expressed in terms of the displacements Vk(z)

(k =1,2,3, ..., n) of the plane kinematic model considered above in the
plane of the cross—section of the shell. The coefficients of Vk(z) of
ths sum (1.2) can be taken as independent magnitudes determining the form
of the displacements of the hinged rod system in its plans. The number n
of required functions Vy(z) is equal to the number of degrees of
freedom of this system in the plane of the cross—section and is determined
by the formulea

n=2m-~c (1.3)

where m is the number of Joints and ¢ 1is the number of rods of the
transverse multiply connected elementary frame.

By choosing in soms menner n independent magnitudes YV, (z) for
the displacements of an elementrary rod system in the plane of the
section =z = constant and giving in succession to each of these magnitudes
unit values and assuming the others equal to zero we can, by considering

~the elementary displacements thus obtained of this system, determine all

the required functions Wi(s). Each of these functions will reépressit a
contour displacement of a point s 1In correspondence with the elementary
state Vk* =1 and Vp* =0 for h £k (figT 3). The function 1yk(s)
within the limits of each straight segment of the contour of the shell

maintaing a constant value (does not depend on s8) and represents an
axial displaceument of the corresponding hinged rod model. We shall
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thus set up n linearly independent diagrams of the functions Wk(s) far
eny choice of the magnitudes V,(z).

These magnitules will be chosen in such a manmmer that three of
them, Vy(z), Vo(z), and V3(z) will refer to the displacements of the

model as a plane system of rods as a whole without change in shape of this
system. The remaining magnitudes V)(z), V5 (z)y eev, Vp(z) will refer to
such displacements of the system for which the mutual position of the
individual links of the system changes. The phenomena assoclated with

the change in shape of the hinged rod system will be denoted as the
deformation of the contour of the system. The contour deformation is

thus determined by n — 3 Independent magnitudes where n 1is the number
of degrees of freedom of an elementary lamina of the shell considered as

a plane hinge—commected system. The magnitudes V)(z), Vs(z), ver Vp(z)

will be denoted as the generalized coordinates of the deformation of the
ghell contour.

The functions wk(s) chosen in some way or other corresponding to

the n degrees of freedom of the system of rods in its plane satisfy the
condition of linear independence and the condition of continuity of the
displacements determined by these functions of the elementary transverse
frure at all points of its contour including also the nodal points since
the hinged model In each of the n possible slementary states Vk* =1,

v, {z) =0 for h 4k remains everywhere continuous.

~

2. Fundamental Differential Equetions — Method of Displacements

After choosing the functions ¢H(B) and ¥ (s) in the sums (1.1)
@nd (1.2) the problem reduces to the determlnatlan of the functions Uj(z)
wnd Vi (z) (1 =1,2,3, ..., m, k=1,2,3, ..., n).

Iet o = o(z,s) and T = 7(z,s) denote respectively the normal and
tangential stresses arising in the section 2z = constant. We shall consider
these stressss functions only of the coordinates of the point (z,s) on the

garface assuming that over the thickmess of the shell the stresses o
anl T are uniformly distributed. On the basis of Hookel's law

o = E‘a,au’ T = G(g—:— I+ %‘Vz‘- (2-1)

Hence naking use of equations (1.1) and (1.2) we have

o(z,s) = ES U;*(z)p;(s) (1 =1,2,3, ..., m) (2.2)
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{(z,s) = G[Z Ui(z)qai'(s) + kai'(z)qu(sﬂ (1 =1,2,..., m,k. =1,2,.0., n)
— ' (2.3)

where E and G are the moduli of elasticity of the material of the shell
in tension. and shear.

The elementary cross—sectional lamina of the shell, willl be under the
action of extermal forces consisting of normal and shearing forces acting
-In the sections 2z = constant and z + dz = constant and the given
surface forces. Let p* = p*(z,s), and q* = q*(z,s) denote the forces
external with respect to the given lamina acting respectively along the
generator of the shell (positive in the direction of increasing coordinate z)
and tangential to the contour line of the cross—section (positive in the
direction of increasing coordinate s). Referring these forces to unit
area of the middle surface we obtain the equations

p*:-a—z—5+'_p q*:?—;8+q (2-’4‘,2'5)

where the thickness of the shell & = 5(s) 1s assumed a given (in the
general case not continuous) function of a single coordinate s and the

magnitudes p = p(z,s), and q = q(z,8) represent the given external
surface Fforces.

The integral conditions of equilibrium of the elementary frame for

chosen forms of the displacement determined by the m + n degrees of

freedom, on the basis of the principle of Iagrange can be represented in
the form of m + n equations:

fg' P,dF f‘rcde.F +fp€p3ds =0 (3 =1,2,3,..., m) - (2.6)

ds +k/;¢hds

It
@]

JPBZ Ynd¥ = :E::vku/\

(h = 1,2,3,¢0., n) (2.7)

'ﬁﬁheré dF 1is the differential of therarea of the shell cross—section

dF = 8ds (2.8)
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The intégrals above and those glven iIn the following are definite and
are taken over the entire contour of the section 2z = constant.

Equations (2.6) represent m conditions of equilibruim of the

- lamina dz = 1 in the direction perpendicular to the plane z = constant;
equations (2.7) represent n conditions of equilibrium of the same
lamina in the plane 2z = constant. Xach of the equations (2.6) expresses
the equating to zero of the sum of the work of all external and internal
forces of an elementary lamina with change in the deformed state of the
lamina relative to its plane.

For the virtual displacements in the equations of subscript J of
this group there are taken the longitudinal displacements uy = ¢J(s) of

the points of the elementary frame determined only by the term of
subscript 3 of the sum (1.1) for Us* = 1. The first and third terms

of this equation refer to the work of the extermal forces p¥* = %g 5+ p

acting on the element of width dz = 1 and directed perpendicular to
its plane. : :

The middle term expresses the work of the internal shearing forces.
For an element de +this work is determined as the product (with reversed
sign) of the shearing force T8 ds by the shear deformation which in the
case considered of the variation of the deformed state is equal to the
derivative QJ'(s) of the function o;(s).

Each of equations (2.7) was obtained by equating to zero the sum of
the work of all the extermal and intermal forces of the elementary frame
on the corresponding displacements for a change in the deformed state of
the element in its plane. TFor the virtual displacements in the equation
of subscript h there were taken the transverse contour dlsplacements
Vy = Wh(s) of the elemsnt determined only by the term of subscript h
of the sum (1.2) for the generalized coordinate Vh* = 1. The first
end third terms of equations (2.7) refer to the work of the external

contour forces g¥* = Sz 5 + g of the element acting in its plane. The

second term expresses the work of the intermal forces on the deformations
of the element corresponding to the h—th elementary state of the
displacements of the hinged system in its plane. For the element ds
this work in the case of bending is determined (with reversed sign) as
the product of the bending moment

M(z,s) = > V (zM(s) (x=1,2,3, ..., n) (2.9)

s)
by the angle of rotation M%g d
element. The letters M = M (s) and M, = My(s) denote the bending

[}

of two adjacent sections bounding this
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moments of the transverse frame element corresponding to the elementary
states of deformation of this freme Vi* =1 and V,* = 1. These maments

are found by the usual msethods of structural mechanics by proceeding

~backward from the deformed state of the rod system to the intermal forces.

. The magnitude J = J(s) represents the moment of inertia of an
arbitrary cross—section of the elementary frame of the shell having a
wldth dz = 1. If the shell consists of only rectangular plates and has
no transverse comnections then evidently

3 .
T = i_g | - | (2.10)

where & 1s the thickness of the corresponding plate.

In the case of a shell reenforced with additional transverse frames
the magnitude J mst be computed with account taken of the mean moment
of inertia of these frames, that is the moment of inertia associated
with a unit length of the shell.

Substituting in equations (2.6) and (2.7) for o end T their
expressions (2.2) and (2.3) we obtaln a system of m + n linear differentisl
equations with respect to the required generalized displacements, m
longitudinal Ui(z) (1 =1,2,..., m) and n transverse V,(z)

(x = 1,2,..., n). This system can be represented in the form

1,3
h,k

1,2,..., m
1,2,e0e, 1

Z ChiUi' + E rhkvk" - E BV + é-qh =0
i k k

(2.11)

where 7 1s a constant magnitude defined Dby the e‘qua'bioh

Y =

QI

(2.12)
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The coefficlents of equations (2.11) are computed by the formulas:

&1 =f ?y(s)p; dF, cyc =f 93" (s hy(e) OF,  zpy =f’¥h(é)‘*‘k(5) aF
(2.13)

by; =fq’3'(s)<Pi'(s) dF, cpg =f1lrh(s)CPi'(s) aF, sy =th———(s;f{(s) ds

" where the integrals are taken over all the elements of the cross—section

of the shell, These coefflcients possess the properties of symmetry

831 = 333> Thk < Txh

by = Piys  Bhk hi = Cg Tor h =k (2.14)

I

expressed by the theorem of Betti on the reciprocity of the work of an
elastic system.

Formulas (2.13) are of a general character and permit computing the
coefficients of the equations (2.11) for a shell of arbitrary contour of
cross—ssction for any method of approximation of the required displace—
ments u(z,s), v(z,s) for varying s.

In choosing the functions o@;(s) (1 = 1,2,..., m), ¥y (s) (k = 1,2,..., n)
by the method described above the quadratures on the right sides of
formulas (2.13) for each straight segment of the contour receive a simple
expression because each of the functions @ over this segment depends
on the coordinate 8 1linearly and the derivative mi', like each of the

functions vy, has a constant value over a straight part of the contour.

The quadratures of the first five formulas (2.13) for dF = & ds
have the same form as the last of these formulas except that instead of
the magnitudes reciprocal to the moment of inertia the thickmess of the
shell enters under the integral sign. All the coefficients of the equations
can be computed by the known devices of the theory of framed structures
with the aid of diagrams of the functions @;(s), @;*(s), ¥, (s), M (s)
constructed for the entire multiply connected contour.

The magnitudes pj(s) and qh(z) referring to the free terms of

equations (2.11) are known functions of z and for given surface forces
of the shell p(z,s), q(z,s) are computed by the formulas
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Py = JFP@J ds, ap =\/hQWh\dS | (2.15)

where the contour integrals are taken over the parts of the contour for
which the expressions under the integral sign are different from zero.

The magnitudes pJ(z) and qh(z) corresponding to their physical

meaning arising from the method of their definition can be termed the
unit (referring to unit length of the shell) generalized external forces.
The longitudinal omnse, pJ(z) is computed as the work of the extermal

longitudinal surface forces, p(z, s) over the longitudinal displacements,
Py (8), of the elementary (unit) state of deformation of the lamina

for UJ = 1, while the transverse one, qh(z) is computed as the work of

the external surface contour forces q(z,s) obtained for the contour
displacements of the points of the elementary lamina Vu(s), determined
by the unit displacement Uh = 1.

Formulas (2.13) and (2.15) are easily oxtended also to shells
stressed over individual longitudinal elements (stringers) and under the
action of concentrated loads in the section 2z = constant., In this case
the quadratures in (2.13) and (2.15) must be taken in the sense of the
StieltJes integrals. To the integrels for contlinuous distribution over
the contour of the differentials dF, p ds, g9 ds must be added magnitudes
which represent the sum of the products of the finite factors concentrated
at definite points (the areas of the stringers, the concentrated forces)

and the values of the corresponding functions under the integrals at
these points.

The systems of the fundemental differentisl equations (2.11) of the
prismatic shell may be represented in the form of table 1 (2.16) (found at
the end of the text). This table represents the differential matrix and
the free terms of equations (2.11). The elements of the matrix represent
the linear differential operators with constant coefflcients, where these
operators in the first and fourth quadrants are of the second order and in
the second and third quadrants are of the first order (D and D2 denote
the derivatives with respect to 2z of the first and second order of the
corresponding requirec function written in the top row over the columm
containing the given differential element of the matrix). To obtain
any differential equation of the system it 1s necessary to multiply each
of the elements of the corresponding row of the matrix symbolically (by
which is meant the differential operation expressed by the given element)

"by the function in the top row over the columm containing the given
element, combine all these products and to the sum add the free term of

the given row and equate the result to zero. The system of differential
equations represented In the form of table 1 consists of m+ n

ordinary linear differential equations with constant coefficients each
of the second order with respect to the m + n required functions

Uj(z) and Vi (z).
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This system of equations by 1ts physlcel meaning divides itself
into two groups of equations. The first group written out in the first
half of the table consists of m equations and expresses the equilibrium
of the elementary elastic frame lamina out of its plane as a system of
rods possessing on the prismatic surface m degrees of freedom. The
second group of equations, comsisting of n equations, refers to the
equilibrium of this frame in its plane possessing in the latter n Jdegrees
of freedom. The matrix of the differential equations possesses a
symmetrical structure and consists of four quadrants of which the first
and fourth are the principal quadrants, the second and third the secondary,:
and represent energostatically the mutual effect of the two forms of
deformations of the elastic shell. The elements of the secondary
quadrants of the matrix which are symmetrical wlth respect to the
principal (diagonal) terms differ only in sign. The equality of these
elements in absolute value 1s a consequence of the theorem on the
reciprocal work of elastic systems.

The equations here described represent a generalization of the
earlier obtained elght—term equations for cylindrical shells and
composite systems of open profile (references 1 and 2). The equations
represented in the form of table 1 are completely analogous to the
equations of the theory of statically indeterminate systems and differ
from the latter in that these equations are differential since the
deformed state of the transverse plane frame as an element of the shell
depends on the position of the element along the length of the shell
(on the coordinate z).

The differential equations (2.11) were derived for an arbltrary
choice of the functions @;(s) and wk(s) determining according

to equation (2.13) the coefficients of these equations. Since the functions
P; and Wk are linearly independent and each of them may be given with-

an accuracy up to an arbltrary factor, for the required functions U,(z)
and Vk(z) there can always be chosen such independent generalized

longitudinal and transverse displacements of the elementary hinged
system of the shell dz = 1 for which the polygonal functions @y(s)
and wk(s) corresponding to these displacements over the entire cross—
section 2z = constant possess the property of orthogonality. Assuming
each of the pair of functions o;(s) and vk(s) orthogonal, we shall
have

0, 1if J#1

831 =fq’aq’i a

Ty =f\lrh¢rk @F = 0, 1f h#k _ (2.17)
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g For these conditions equations (2.11) assume the form

T 73'JJU Z Pa1t1 -~ ankvk' tgpy=0  (L,y=12,..0,m)

ﬁ . (2.18)
i:."hiUi‘ + Ty V" = 7sthkvk +tgm=0 (ak=12,.., 2

{ : The differential matrix of these equations now has a simpler

' structure since, with the condition of orthogonality (2.17) satisfied,

the secondary differential terms of the principal (first end fourth)
quadrants, table 1, that i1s the terms with the coefficients 843 and 1,

for 14 3, h # k vanieh.

; Written out in full equations (2.18) are represented in teble 2 (2.19)
| (found at the end of the text). The magnitudes Uy(z) and Vi(z) corre—
: sponding to the conditions of orthogonality may be called the principal

generalized coordinates of the longitudinal and transverse displacements of
the shell.

The choice of the orthogonal functions @y(s) and wk(s) may be

made by the graphico—analytical methods of structural mechanics by
‘ drawing the dlagrams of these functions and orthogonalizing the group
1 states of the elementrary displacements of the trensverse laminar element.

i 3. Boundary Effect — The Intermal Generalized Forceé -
| Longitudinal and Transverse Bimoments

The equations (2.19) or, in the case of an arbitrary choice of
l the functions @; and ¥, equation (2.16) possess the ssme structure

as the equations of vibration of an elastic system possessing a finite

number of degrees of freedom. Of the present day methods of integration

of a symmetrical system of linear differentisl equations with constant

; coefficients the most effective method is that of A. N. Krylov, which
permits reducing this system rapidly to its equivalent single differentisl
equation. In our case this equation will be of the order 2(m + n). It

| follows that the required functions Ui(z) and Vi (z) satisfying the

i system of equations (2.18) will be determined with an accuracy up to
2(m + n) arbltrary constents. The number of these constants is equal to

! twlce the number of degrees of freedom of the elementary lamina of the
shell dz =1 1in space. This 18 in full agreement with the number of
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.independent kinematic conditions which can be given for the end sections
of the shell z =0, z = 1 (where 1 is the length of the shell in the
direction of the generator). The position of all the points of any of
these sections in space for a shell treated in the section =z = constant
as a discrete system is determined by m + n independent magnitudes of
vhich m magnitudes U;(z) determine the position of all points of

Juncture of the section on a prismatic surface (along the generator of
the shell) end n magnitudes Vi (z) determine the position of these

pointe in the plane of the cross—section. For a single end section of
the shell m + n arbitrary magnitudes may thus be assigned., For the
two sections z =0 and z = 1 which bound the given shell over its
length the number of independent conditions is equal to 2(m + n) which
corresponds to the number of arbltrary constants in the integrated
equations (2.11).

With these constants given we can obtaln a solution for a given
shell for the most varied boundary conditlons relative to the longitudinal
and transversed displacements, this solution belng entirely determinate
and unlique and satlisfying all the required kinematic conditions of the

ghell.

Let us now consider the problem of the equilibrium of the shell for
which the boundary conditions in the sections z =0 and z =1 are
glven In terms of stresses or, in the case of the mixed boundary problem,
partly in terms of stresses and partly in terms of displacements. By
definition of the functions U;(z) and V,(z) from equations (2.11)

the stresses o = o(z,s) and T = T(z,8) at any point of the cross—
sections =z = constant will be found according to equations (2.2) and
(2.3) also with an accuracy up to 2(m + n) arbitrary constents. The
gtresses o and T at the section 2z = constant for chosen polygonal
functions @;(s) and wk( s) can be expressed In terms of m + n
independent generalized static magnitudes. These magnitudes we shall
introduce by generalizing the fundamental concepts of the elementary
theorem of the bending of beams as was done in our work on the general
theory of the thin—walled elastic rods based on the law of sectorial
areas (reference 3).

Starting from the idea of the virtural work of the normsl and
ghearing forces o® and 78 of the cross-section =z = constant on
each of the m + n possible displacements of the points of this section
in space we introduce the following magnitudes

PJ(Z) =fccpj d_'E“ (3 =1,2,..., m)

Q,(z) =fwh ar (b = 1,25000, n) (3.1)
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where the contour Integrals are teken over the entire crosg—gectional
element of the shell. The magnitudes 7P 3» @, represent generalized

longitudinal and transverse forces of the section 2z = constant.
Considering these magnitudes as the internal forces of the shell we
express them in terms of the fundamentel functions U; and Vi. On
the basis of equations (2.2), (2.3), and (3.1) we have

1, =1,2,.0., @
(h,_k 1,2,ee., 0 (3.2)

%

G Z chin_ + Z rhkvk'
i k
If the functions Py and *k are orthogonal

1,2,..., m) (3.3)

Py = EayqU,", Q= G<§ ongUy + rhhvh:> (3

Equations (2.2) can now be written as

J
=5 < =1,2,..., m) R
o 533 Py (3 m (3.4)
or In expanded form
P,
o(z.0) - A o) + B2 e s v B ) (33)

Equation (3.4) represents the generalization of the three~term
formula proposed by us for the normal stresses of open cylindrical and
prismatic shells (for thin—walled rods with open profile sections)
undergolng simultaneous tension, bending in two planes and torsion. The
theory of such shells is based on the hypothesis of the nondeformability
of the contour of the cross—section.

For the open shell with rigld cross—sectional contour setting

=1 % =2x(s), 93=y(s), o = a(s) (3.6)

vhere x(s) and y(s) are the cartesian coordinates of an arbitrary
point of the contour in the principal central axes of the section
and o(s) 1is twice the area of the sector determined by the arc MM




14 - - NACA TM 123k
and the straight lines Joining the ends of this arc with the center of
flexure (fig. 4) we obtain Ffor the generalized forces Pp,..., Py, the

first four terms of the series (3.4), the following values (reference 3,
p. 48).

m"d
#
"
=

Pl=fcldF=N,

P3=f°de"

The first three equations of (3.7) determine the known statical
magnitudes (normal force and. moments) of the cross—section of a beam;
the fourth equation determines a new static magnitude having the
dimensions kilograms per centimeter® and representing the work of all the
elementary longitudinal forces o dF of the shell on the deplanation of the
crogs—section determined by the law of sectorial areas. This magnitude is
termed by us the bimoment. The condition of orthogonality of the four
fundamental functlons (3.6) is determined by us In the form

f]xdF=flde=fx;Vd.F=O, flmdF:fxm.dF:\/ywdF:O (3.8)

Of these conditions the first three coincide with those known from
the theory of the bending of beams and which determine the principal
central axes of the cross—section of the shell. The second group of
equations (3.8) refers to the sectorial geometric characteristics of
the cross—section of the shell and determines the sectorial origin M,
(the starting point for computing the sectorial area) and the center of
flexure of the shell. For the conditions (3.8) the bimoment B = B(z)
represents a generallzation statically equivalent to the vanishing of
the longitudinal force.

M&

B (3.7)

4
&~

Q\‘v
g
Z

Corresponding to equations (3.6) and (3.8) we obtain for the
geomatric characteristics a3 (3 = 1,2,3,4) of the first four terms

of the series (3.5) the values
all=f12dF=F, 8.22=fxedF=Jy

a33=fy2dF=Jx, am=fa>26F=Jm

The first three of these characteristics agree with the well-known
Pundamental chaeracteristics of the cross—section (area and moment of
inertia) in the theory of the bending of a beam. The fourth charac— 6
teristic represeuts a new magnitude having the dimenslons of centimeters
and denoted by us, in analogogy with Jy, J&, the sectorial moment

of inertia.

(3.9)
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The equation (3.5) for the thin-walled open shell, keep only the
first four terms, assumes on the basis of equations (3.7) and (3.9) the
form .

g:!.;.&x.;.&'y.f..?_a) (3.10)
FUOI 3z 3y

The first three terms of this equation determine the stresses of
the thin—swmlled rod in the case of tension (compression) and bending. The
fourth term determines the stress arilsing in the case of torsion of the
rod and distributed over the section by the law of sectorlal areas w = m(s).

The static magnitudes N = N(z), My = M (z), and M = My(z) are found

by the well—known methods of the resistance of materials. The static
magnitude B = B(z) refers to the normel stress o = (B/'I(D)cn due to

the torsion determined from the differential equation

e3)
B"——4p 4+ 2 _ 0 (3.11)
[d}] [4V]

in which GJ3 1s the stiffness of the rod in pure torslon determined by

the theory of Saint Venant end m = m(z) 1is the extermal torsional
moment reletive to the center of flexure.

From the analogy here given it follows that equation (3.5) for the
shell with closed multiply connected deformable contour for a choice of
the first three functions q)J(s) by the equations ¢ = 1, ¢, = x(s)

and Qg = y(s) and the conditions of orthogonality (2.17) can be
represented in the form

M

P
3
0‘=§+J_—yx+M_I;y+_A‘_q)h+
F. y apy

2
855

where the flrst three terms refer to the stresses distributed over the
section according to the law of plamne deformation and the corresponding
elementary theory of the bending of beams. The remaining generslized
longitudinal forces Py(z), P5(z), «es, P (z) for the contour of the shell
possessing in the longitudinal direction a number of degrees of freedom
greater than three willl represent the Intermal "longitudinal" forces
having essentially the same character as the forces ‘N, My, and My of a

beam, the only difference being that these forces, for a choice of an

orthogonal system of functlons cpi(s) ,» each represent over the cross— .
section a balanced system of longlitudinal forces and arise as a result of
the deplanation of the section. In contrast to the longitudinal force N

P
m
Ty 5+... +aq>m (3.12)



16 - . NACA TM 1234

and the bending moments M, and My the generalized longltudinal

forces Pl; R P5"" s P associated with the deplanation of the section

wlll be denoted as the longitudinal bimoments. These bimomsnts
correspond to the generalized coordinates Py s Psseees Py of the

deplanation of the cross—section.

The geometric characteristics

- 2
oy = [0 ar (3.13)
by analogy with the well—known magnitudes

a22=fx26F=Jy, a33=fy2dF=Jx (3.14)

are denoted as the longltudinal bimoments of inertia.

In a simllar msnner the physical sense of the generslized transverse
forces @ (z) (h = 1,2,...n) determined by the corresponding equations (3.1)
and (3.3) can be explained.

If of the n generalized transverse displacements we give the
First three functions Vy(z), Vo(z), and V3(z) the sense of three

Independent displacements of the elementary lamina as a rigid system in
the plane of the cross—section of the shell and set

¥p(s) = x'(s), ¥p(s) =3'(s), ¥3(s) = x(ely*(s) - y(s)x*(s) (3.15)

the magnitudes @ (z), Qy(z), and Q3(z) corresponding to the coordinstes

of the displacements will represent the first two transverse forces and.
the torsiocnal moment of the entire section =z = constant, respectively.
The remaining static magnitudes Qu(z), Q5(z), and Qn(z) wlll represent
the generalized transverse forces each camputed as the work of the
elementary shearing forces T dF by the corresponding contour (tangential)
displacements, that is by the dis lacements of the shell determined by
the generelized coordinates g $5(s seees ¥y (s) of the deformatioms

of the contour of the cross—eection.

In contrast to the forces Q = Qx and QQ = Qy and the torsional

moment Q3 = H, the generalized forces Qs Q5,...,-Qn corresponding
to the components V), Vs,..., V, of the deformations of the contour of
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the section we shall denote as the transverse bimoments of the she}l.
Equations (3.3) determine the relation between the generalized forces
and-the generalized displacements of the shell.

The generalized forces P (z) (J = 1,2,.00, m), @(z) (b =1,2,..., n)

characterizing the gtate of the normal and shearing forces in the cross—
section of the shell are likewlge determined with an accuracy up to 2(m + n)
constants of Integration of the system of differential equations of the
shell. We now assume that any edge of the shell z = z, is acted upon
by a given system of normal and shearing forces. ILet p°(zg,s), q°(zy,8)
represent the corresponding normal and shearing forces referred to unit
length of the contour at the point s. These forces as functions of g
may be given entirely arbitrarily. In our problem the longitudinal and
transferse forces at any section z = constant are determined by a
finite number of Independent static magnitudes of the corresponding
finlte number of degrees of freedom of the displacements of the contour
line around the section and in its plane. These magnitudes are gener—
alized longitudinal and transverse forces which for the given normal and
shearing forces po(zo,s), qo(zo,s) are determined by the equations

Py° 5fp°cpj ds, @,° =fq°¢h as (3=1,2,0e., my, h =1,2,..., n) (3.16)

|
‘
ﬂ

The above equations together with equations (3.2) lead, for the
section z = z_, to the equations

EaJiUi' =\/PP0@J ds, GlcyyUy + ThkUk') =L/ﬁqowh ds (3.17)

These equations determine the relation between the required generalized
displacements and the given generalized forces at the bounding
section z = z,.

Having the general integral of the differential equations of the
shell and meking use of the general formulas (3.17) we can determine
the state of the deformations and stresses of the shell for the most
varied boundary conditions on the sections z =0 and z =1 given in
terms of stresses, displacements, or partly stresses and partly dlsplacements.

L. Shells Having & Single Degree of Freedom for Deplanation
of the Section and Deformation of the Contour
ILet us consider the class of shells for which the deplanation of

the section end the deformation of the contour are each determined by a
single parameter which is a function of the coordinate z. To such
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shells may be reduced a number of practically important problems encountered
in the construction of thin-walled structures in various applied fields of
technology. '

As a very simple example let us consider the shell, the cross—section
of which is represented in figure 5. We assume that the vertical plates
of the shell have cylindrical hinges at the lower longitudinal edges and
are fixed over the entire supporting length agalnast longitudinal displace~
ments. For such a shell the elementary transverse lamina as a plane
hinged system with the supporting points completely fixed, possesses
three dsgrees of freedom, two out of 1ts plane and one In its plane.

We assume further that the section of the shell is symmetrical relative
to the middle vertical line and that the shell is acted upon by a
transverse load of given intensity q = q(z) applied in the plane of
the horizontal plate. In this case the longitudinal displacements of
the shell u(z,s) in the section & = consbtant for any two points of
the section symmetrically located wilth respect to the axis of symmetry
will be equal in absolute value and opposite in sign.

These displacements are determined by a single parameter Ui(z)
for which we take the longitudinal displacement (taking it positive) of
the upper right angle of the section. The graph of the displacements
represented for Up* = 1 as the function ¢(s) is shown in figure 6.
The law of distribution of the longitudinal displacements and therefore
also the normal stresses over the section 2z = constant 1s postulated
by the displacements of the points determined by this function. This
law differs from that of plane sections.

The derivative ¢i'(s) within the limits of each of the segments

of the section remains constant and in absolute value equal to l/dl
for the vertical portion and 2/d2 for the horizontal portion where
d; and d, are the lengths of the vertical and horizontal portions.

The transverse contour dlsplacements of the shell for the case
where the longlitudinal edges are fixed, are determined likewlise by a
single parameter Vy(z). For this paremeter we take the bending of the
horizontal plate in the section =z = constant (fig. 7). The contour
axial displacement of the points of the section of the shell that are
determined by the function wi(s) corresponding to unit value of the

required magnitude Vl* = 1 is shown in figure 8. These displacements
on the vertical portions of the section are equal to zero and on the
horizontal equal to unity. The arrow in figure 8 gives the direction
of the positive displacement. Figure 9 shows the graph of the bending

moments of the elementary transverse frame corresponding to the
displacement V7 = 1 of the horizontal elements.

For the moment M; at the joint of the frame it 1s not difficult
by the methods of structural mechanics to obtain the formila
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6E
M = vy (k.1)
2d412|9; + dld2|J2

whéfe d; end 4, are the wildths of the vertical and horizontal plates, |
J; and Jo, the vertical and horizontal moments of inertia of the
elenentary framse.

In the problem under consideration there are thus to be determined
two-fundemental functions, the longltudinal displacement Uj(z)
determining the deplenstion of the section and the transverse displace—
ment Vi(z)' determining the deformetion of the contour of the section.

Setting in equations (2.11) 1, J=1; h,k =1 we obtain
7&11U1" —_ bJJ.Ul — Cllvl. = O, CllUl' + I'llvl" - 7511vl + ;LG' q.l =0 ()"‘02)

The coefficlents of equation (4.2) are computed by formulas (2.13).
Applying these formalas and meking use of the graphs of the corresponding
functions given in figures 6, 8, and 9 we obtain

N\

2 1 f o ol 5o

- aF = L (o7, + o), by = 2 g5 - o[ L 422
811 fCP:L 5 (BFp + o) 11 Py (11+ de)

°11 = fq’l"’fl aF = 28, 11 =f‘1’12 oF = Fp (4.3)

Sll = =
2
I 4R(ay|ay + dp|3p)
where 81 and &p are the thickness of the verticel and horizontal
plates respectively, ¥ and F,, the cross—section areas of these

plates and Ji and Jp, the moments of inertia referred to unit

length of the longitudinal sections of the shell on the vertical and
horizontal parts, respectively:

813 8-3
J. = - 2 ' L,
1 10’ Jg s . (k.5)
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If the shell has along its length a number of transverse frames
the moments of inertia J7 and Jp must be computed with account

taken of the resistance of these frames to bending.

Equations (%.2) for the coefficients (4.3) will be completely
determinate for a glven shell. By giving different values to the
magnitudes 43, dn, 87, 8o, Jl’ and Jp, a number of special problems
can be considered referring to the computation of a given shell for
an antisymmetric load on the cross—section. ILeaving in equations (k.2)
the coefficlents a4, bll""’ 871 a8 yet arbitrary let us comsider
more in detail the solution of these equations and incidentally explain
the physical side of the elastic computation model.

The system of differential equations (4.2) by eliminating the
longitudinal displacement reduces to a single equation relative to the
transverse dlsplacement of bending of the horizontal plate Vi(z). This
equation may be written in the form

Iv 1

24 u
v, o —on?y 4 B+ L (by7q = 78550™) = O (4.6)
1 114 114
1 1 g6
where
1 bq8
A% —— (72&11811 + bur]_-l_ - 0112), Bh' = 71, 7 = % (4.7)

= g]
hallrll a117r11

Differential equation (4.6) expresses the equilibrium of the elementary
transverse frame in the dense elastic medium which is constituted by the
given shell relastive to this frame. In its form this equation agrees

with the equation of the bending of a beam on an elastic support resisting
not only bending but alsc shear along the line of contact of the beam
with the support. The elastic medium jin equation (4.6) is represented by
two Independent magnitudes A° and B , Wwhich may be called the generalized
elagtic characteristics of the beam, each having a single degree of
freedom for the deplanation of the sectlon and the deformation of the
contour. These characteristics, as is seen from equations (L4.7) and (4.3)
are determined by the functions @;(s) and Wl(s) referring respectively

to the deplanation and deformation of the contour of the shell and by
the form and geometric dimemsions of the cross—section of the shell, by

the ratio 7 = % of the elasticity modulus and the stiffness in bending

in the transverse direction represented by the moments of inertia Jq

and Jp of the elementary frame of width dz = 1. Thus, for example,

for the shell represented in figure 5 the elastic characteristics A2

and B* for given dimensions of this shell on the basie of formulas (4.3)
assume entirely definite values.
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The characteristic BY as is seen from the second of formulas (4.7)
is proportional to the coefficient 877 referring to the bending of

the elementary transverse lamina as a freme. If the plates of the shell

" ‘arevhinge connected at the Joints, the transverse bending moments of the

elementary lamina on changing its shape is equal to gero. The coeffi-—
clent 877 and therefore also the characteristic. B 1in this case

becomes zero:
811 = Bh‘ =0 (’4-.8)

and equation (4.6) for the zero moment shell goes over into the
simpler equation

v, TV — 2n®yy " 4 clllG(buq ~ 7817a") = O (4.9)

in which now

2
byqr - c11
2. 1 (4.10)
Y RESR

Proceeding to the solution of the differential equations of the
class of shells here consildered we note that the two kinematic magni-
tudes Uq(z) and Vl(z) by formlas (3.2) are reduced to two kinematic

magnitudes corresponding to the static magnitudes Pl(z) and  Q(z)

introduced by us, the first of which represents the required longitudinal
force generalized for the deplanation of the section (longitudinal
bimoment ) end the second the generalized transverse force in deformation
of the contour (the transverse bimoment). We thus have four required
magnitudes U;(z), Vl(z), Py(z), and @ (z) representing generalizations

of four magnitudes that are well known in the theory of the resistance
of materials on the bending of beams: +the deflection y(z), the angle
of rotation of the section y?'(z), the bending moment M(z), and the
transverse force Q(z).

The arbitary constants of the integration are determined by the
boundary conditlions which, depending on the type of problem may be
given in generalized displacements U, and V,, in generalized forces P;

and: Q;, or partly in dlsplacements and partly in forces, only two condi—
tions being required at each of the bounding sectlons of the shell 2z = O,
z = 1. Thus for example if the Infinitely long shell with section
represented in figure 10 1s acted upon by a concentrated transverse

horizontal force P the conditions for determining the constants of
integration on the part 0 z <« assume the form
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P _
Uy = 0, GlcyqUy + ryq71t) = — 5 for z=0

(4.11)

V=0 G(cq90y + rliVl') 0 for z ==

]

The first and third conditions are kinematic and express the fact that

in the plane of action of the force P the deplanation of the section

is equal to zero (section z = O by symmetry remasins plane) and at
infinity the deformation of the contour becomes zero. The second and
fourth conditions are static and refer to the generalized (in the sense

of virtual work) transverse force Q (the transverse bimoment) which

in the section 2z = 0 must be in equilibrium with the external transverse
load and at infinity becomes zero.

In table 3 are given the values of the generallized displacements
for various sections of the Infinitely long shell, represented on figure 10
and loaded by a transverse horizontal force P. These displacements
and stresses asre computed for shells consisting of three plates of
equal width and thickness for a ratio of thickness to width of plate
equal to 0.0l.

In the firsE row of table 3 are given the values of the relative
coordinate § = I (& 1is the width of a plate), 1n the second row are

given the magnitudes proportional to the longitudinal displacements Uj

of the right Joint of the "frame" of the cross-—section; the third row
refers to the transverse displacements V-, (deflection of the horizontal

late), dstermining the deformation of the contour of the section of the
shell. From these displacements are determined the trsnsverse bending
moments of the shell arising from the stiffness of the Joint of the

plates (horizontal and vertical). The maximum bending moments, according
to the graph shown in figure 9, arise at the Joints of the transverse frame

and are determined by the formuila
2ET
M(E) = £ = V1(8)
d

in which the plus sign refers to the lsft and the minus sign to the
right Joint. In the fourth rcw of the table are given the magnitudes
proportional to the longitudinal normal stresses o = o(t) referring
to the points of Juncture of the cross—sectlon. The graph of these
stresses over the section =z = constant agrees with the graph of the
deplanation of the section, shown in figure 6. The last row refers to
the tangential stresses T = 7(t) forming in the section z = constant
the flow of shearing forces s = TBH.
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The values of the displacements and stresses glven in table 3 refer
to the sectiaons of the shell with positive abscissas ¢ = €-= constant.

For sections with negetive abscissas the magnitudes V; and o retain

thelr values while Uy and T  reverse their signs. - It is-seen from

table 3 that the deflections V; of the horizontal plate and therefore

the transverse bending moments proportionsl to the deflections (the
graph of these moments as a function of ¢ 1s shown in fig. 9) decrease
at a slower rate with Increase in distance from the plane of action of
the force than the stresses o.

5. Prismatic Shell with Closed Rectangular Sectlon

As a second exsmple we consider a shell having in the cross—section
a closed rectangular contour with two axes of symmetry (fig. 11).

According to the theory developed above, the elementary transverse
lemina dz = 1 of such a shell possesses 40 of freedom both in the plane
and about the plane of the cross—section. The deplanation of the section
and the deformation of the contour are each represented by a single paramster.

Referring the cross—section of the shell to the principal central
axes Ox, Oy the required displacements u(z,s) of an arbitrary point
(z,s) of the middle surface is represented In the form

= U1y + Upgo + U3ps + Uy, v = V¥ + Volp + Ta¥g + Vi, (5.1)

where

v(s), @, = x(e)y(s)

. q)_]_=ls @2=I(S), q)3
- (5.2)

¥p =h(s), Wy =x%s), ¥3=7'(s), ¥ =x*(s)y(s) + x(s)y*(s)

where x(s), y(s) are the coordinates of an arbitrery point of the contour
determined by the distance s along the contour, h(s) 1is the length of
the perpendicular dropped from the center of the rectangle on the line of
the contour; the primes denote derivatives with respect to the parameter s.

The magnitudes Uj(z)(1 = 1,2,3,4) refer to the generalized
longitudinal displacements of the shell and for chosen functions ¢s(s)
(i = 1,2,3,t) the magnitudes Uy(z) are the displacements of the

section 2z = constant 1in the direction of the 0z axis, the
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magnitudes Us(z) and Ux(z) are the angles of rotation of the section
2 3

z = constant relative to the axes Oy, Ox, respectively, and the
magnitude Uy 1is the generalized deplanation of the section. The

magnitudes Vi(z) (k = 1,2,3,4) represent: V,(z) — the angle of

rotation of the section relative to the axis Oz (angle of torsion),
Vo(z), V3(z) — the deflections in the direction of the axes Ox

and Oy, and Vh(z) — the generalized deformation of the contour of the
section.

Tt is easily shown that for chosen functions @;(s) and ¥y (s)
the system of differential equations (2.16) breaks down into four
independent systems of equations. Of these systems three refer to
tension (compression) and bending of the shell as a beam following the
hypothesis of plane sections. This hypothesis in the first of
formulae (5.1) is represented by the sum of the first three terms. The
fourth system of equations consists of three simultaneous differential
equations in the functions TUy(z), Vi(z), and Vh(z). Ieaving out in

our problem the case of tension and bending we consider the equilibrium
of the shell In the case where it 1s acted on by extermal forces giving
rise to torsion, deplanation of the section and deformation of the
contour (fig. 12(b)§.

In figure 13 is given the diagram of the function @(s) = x(s)y(s)
characterizing the law of variation of the longitudinal displacements
for a unit deplanation Vy* = 1. This function represents a generaliza—
tion of the law of sectorial areas previously given by us for thin-—
walled open rods. Figures 14 and 15 give the diagrams of the
functions ¥) = @h'(s), ¥y = h(s). The signs of the magnitudes ¥y
and Wh on these diagrams are denoted by arrows. The letters denote
the length of the sides of the rectangle (fig. 11). Figure 16 gives the
diagram of the transverse bending moments corresponding to the generalized
deformation of the contour, taken equal to one. This diagram as well as
the diagram of unit deplanation shown in figure 13 is antisymmetric
relative to both axes of symmetry of the section. The maximum bending ,
nmoment arising %t the Juncture point of the contour for unit generalized
deformation V)~ = 1 1is determined by the formula

12
4y [(B31) + a5 |(BTp)

M= (5.3)

in which Jj and J2 are the moments of inertia of the vertical and

horizontal elements of the closed rectangular frame of width d;, do.

If the shell consistg of only gectangular plates having stiff Junctures
3] 3}
1 22”2 and therefore

at the ribs Jl = ]—-—2—, J2 = R
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_ E
" 81|83 + ap[823 N

" Expanding equations (2.11) for the case of torsion of the shell,
computing the coefficients of these equations by formulas (2.13), and
using the diagrams given in figures 13, 14, and 15, we obtain

1 " '
5 B2 02(Fy + F)U" — § 6(a%F, + °F)U, - $ 6(a1%F, - PV,
- -]2—' G(d12F2 + d.22F1)V]+' +p, =0

5 (012, ~ LIt + 2 6(2%F, + a2 V)"
+ 5 G-(d.:]_z}i‘2 - d22Fl>V)+" +q = 0 (5.5)

% 6(2,%, + Pt + L a(a1%F, — aPF V" + = 6(41%F, + 7P V"

_ %6
dq I(EJl) + GQI(EJQ)

Vll_+q1l_=0

vhere d,, d, are the widths of the vertical and horizontal plates,
¥o, +the cross—section areas of these plates, Py = ph(z), Qy = ql(z),

qy = qh(z), the generalized external forces referring to unit length of
the shell and computed by the formulas

m - [e(ena) as, o = [alzei(e) as, g = [alze)e) as

Fy,

(5.6)

in which p(z,s) and q(z,s) are the loads referred to unit area of the
middle surface of the shell and acting in the direction of the generator
and contour line respectively.




26 NACA ™™ 1234

If the shell is acted upon by a transverse verticel load -q(z)-
applied in the plane of some vertical plate (fig. 12(a)) we have

Pl = 0, q = % qd-2: QJ_I_ == % qd-2 (5-7)

The equations (5.5) may be represented in another form, by taking
for the unknown function the longitudinal normal stress o = o(z) and
the transverse bending moment M = M(z) referring to the Juncture
point of the contour. We have

4 g 1/ 9
= g 2
dgdy B

Eliminating from equation (5.5) Uy, and V), with the aid of
formulas (5.8) and denoting the angle of torsion of Vi(z) by 6(z),

U)_,_' M)-l- (5.8)

s
for py =0, q =-9 =—F5> ¥° vbtain
Fp. +Fo aM 1
6 B T2a, 17
dydy = 249

d. d. E
8 o+%<J—l+—-2->M"—8 — + —= ~E 2 _o0 (5.9
dydp 1 92 Gi,“F, Gd°F G dofy

The first two of these equations form a symmetric system relative to
the functions o = o(z) and M = M(z) and in the case of the homogeneous
problem reduce to an equation of the fourth order for o and M

o —28%" + B*s =0, MV —oa2M" 4 BMM = 0 (5.10)
or to an equation of the sixth order for the angle of torsion 6(z)

oVL _ 2a2eTV 4 Blg" = o (5.11)
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where A and B are the generalized elastic characteristics determined
by the formulas '

. A2 - 2k L+ —L. (5.12)
5 - 4 (EJ‘l)+d2’(EJ'2) GA,F;  Gd;°F,

Bt _ _ 384 1
' 4124,°(Fy + Fp) ay |3y + dpdp

Equation (5.10) is the fundamental differential equation of the
shell here considered having 1° of freedom for deplanation of the section
and one for deformation of the contour. By determining from this
equation the function o¢(z) and then by equations (5.9) the remaining
functions M(z), 6(z), adding to the integrals of the homogeneous
equations the particuler solutions of the nonhomogeneous system (5.9)
we obtain the general Integral for the problem here considered. The
general solution will be found with an accuracy up to 6 independent
arbitrary constants. For determining the latter 1t is necessary in
each particular case to use the boundary conditions which in the given
problem will conslst of three conditlons on each of the ends of the
shell. Thus for example, in the case of a shell hinged at the fixed
ends z = 0, z = 1 the boundary conditions have the following form

c=M=6=0 for 2z=0; o0=M=6=0 for z=1 (5.13)

Writing out these conditions we obtaln six equations with six
arbitrary constants of integration of the system (5.9).

We may remark that in addition to the accurate solution here
described, equations (5.9) for the boundary conditions (5.13) can be
integrated with the ald of trigonometric series. Bearing in mind
conditions (5.13) the solution of equations (5.9) for q = constant
may be written in the form
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o= EE: o sin (2n - 1)z

n=l,2..-
en -1
M= D M, sin ( )z (5.1%)
n_l’2a-. 1
:E:: (2n — 1)z
e = en al
n=1,2... L
where op, M, and 6, are the required expansion coefficients of
equation (5.1%). Substituting (5.14) in (5.9) we obtain
ntfolm-1f® 8, 2
6 1° T, nd, (2n — 1)
(2n - 1)2x2
_._<: — M, -8 i + g qul
(5.15)
LE q

GdEFl:IT(@—l)=

2 2
on — 1)°x 1 1 2
( — en -+ 1’. -— Ty -_— q = O (11 = 1’2,3,.. o)
2 2

1 Gd,°F, Gdp Fy GFydpn(2n — 1)
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From these equations and series (5.1h4) the required functions o(z),

M(z), and Q%Z) may be determined with any initially glven degree of
accuracy in the case where the shell is acted upon by a vertical

uniformly distributed load q in the plane of any vertical plate

(fig. 12). We may remark that the series (5.14) for equations (5.15)
possess very good convergence and for practical purposes may be

restricted to the two or three first terms of the expansion, equation (5.14).

Equations (5.9) represent a particular case of the general elght
term equations proposed by the author as early as 1931 (references 2, 3, L),
These equations, thanks to the independent characteristics (elastic E, G,
geametric dj, dp, Fy, Fp, Jq, Jo), permit considering practically

important problems on the computation of thin—wsalled aeronautical and
structural shells of closed rectangular cross—section. Thus, for example,
if the shell is reinforced by ribs or diaphragms then for a sufficient
stiffness of the transverse frames we can set EJ; = EJp = »; equa—

tions (5.9) then go over into the equations of a shell with rigid
(nondeformable) contour.

In the case of a shell consisting only of rectangular thin plates
hinge—connected along the ribs, the second of equations (5.9), which
represents according to the gemeral theory given in the works of the
author (references 3 and 4) the equation of continuity of the angular
deformations on the contour line of the cross—section, drops out. In
the remaining two equations the moments M must be set equal to zero.
We obtain two equations for o and 6 referring to the shell with
zero moment,

If in equations (5.9) the elastic generalized characteristics Gy
and GF, referring to the deformations of shear are set equal to

infinity, we shall have the case considered in detail in the work of
the author (reference 3) and referring to a shell having the properties
of deforming with longitudinal tension (compression) of the fibers of
the shell and with bending of the elementary closed frame of the cross—
section. From this short analysis the meaning of the generalized
elastic characteristics A°, B¥ of ome of the equations (5.10), (5.11)
is explained. Tt is clear that in the case of the loading of the shell
by a nonsymmetrical load the stresses and deformations determined on
the basis of the solution here described must be combined corresponding
to the stresses and deformations arlsing as a result of bending of the
shell as a beam. The elementary theory of the bending of beams, as

is seen from the above discussion, constitutes a particular case of the
general theory here given.

6. Example of the Computation of a Shell of Composite Section

We consider a shell with the section shown in figure 18. We assume
that this shell is attached in some manner to the supports z = O,
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z = 1 and is acted upon by a single transverse load, perpendicular tc

the axis of symmetry of the gection. Of the required generalized
displacements in this case of loading two will be longitudinal, Uy,

Us, and three transverse, V,, Vé, V3. Flgure 19 shows the antisymmetrical
diagrams of the orthogonal functions P qb corresponding to the
displacements U; and U,. Of these functions ¢, represents the law

of linear distribution of the displacements over the section =z = constant.
The function @, represents the deplanation of the section. The
generalized longitudinal forces corresponding to the generalized
displacements Uy and U, will be the bending moment about the axis

of symmetry and the bimoment.

Figure 20 shows the diagrams of the functions Wl’ ¢2, and ¢3
corresponding to the generalized transverse displacements Vl, Vo,
and V3. The magnitude V; represents the deflection of the shell in
the direction perpendicular to the axis of symmetry, Vo — the angle
rotation about the point c¢ on the axis of symmetry, V3 the generalized
deformation of the conmtour of the section. The chosen functions V.,

*2: and ¢3 are orthogonal.

Expanding equations (2.11), computing the coefficients of these
equations by formmlas (2. 13) and using the diagrams given for the
functions @y, 9, &', @°, Wl’ Vos ¥3 assuming that the plates

are hinge—comnected to each other (the shell has zero moment) we obtain
for the dimensions end loads shown in figure 18 and for E = 2G the
equations

£2 §aPu," — UFU; + 3L U, — WEV,? = O

6 25
3F 38 w 1096 3 E:! 5/3 "
= Uyt + = FaeU," - —— = FV, ! — Vot Favy" = 0
25 T ™ 62 2" 25 1 g 2 T 3
3 - 1 (6.1)
YUt — 5 FUo' + 4FVy" = —(P; + P, + P3) e
/3 33 .20 w 3f 53 4p. ) 1
—8-— FdUg' + 1—6 Fd V2 = - d.Pl ? d_P2 T 6

QI+

———-FdU2 +‘E— —_-]__.6_ 1

o3 5Fd9v"— <5"/§dr ——loé/g@2+§§6ap3>
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where F = 6, 8 — thickness of the plate, Py, P,, and Py the unit
transverse loads. We take & = 0.0l m, d = 0.50 @ and 17 = 3.00 m.
We assume that the shell is hinge-comnected on the supports =z = O,
zZ=1. Then for z =0, z=1 o )

For these boundary conditions equations (6.1) can be solved by the
"approximate" method in the form of trigoncmetric series for U

in cos (nnz/1) and for V in sin (nnz/1). Restricting ourselves to
the first terms of the expansion, assuming P, = constant, P, = constant,
P, = constant and solving the system of algebraic equations which are
obtained from equations (6.1) on substituting in them

Uy = A cos %2 V3 =B sin"Tz, P1=1—*1>l sin"—lz- (6.3)
n

Z,cc',

3

we shall have

1
Up = & (-616P) — 213 — 213P3) cos ZE

U, = %}- (124P; — 363P, + 126P3) cos &

1
v, = % (527, + SIHE, + 52TP3) sin ZZ 6.1)
Vo = % (—318P; + 162P, + 432P3) sin KJI_
Vy = L (163p; — 536, + 2k5P;) sin X2

The normel s'bresses. o(z,s) are determined by the formule

du ' '
6=E é—; = E(Ul'qal + U2'q>2) (6.5)
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vhere @ = Ql(s) and @ = q@(s) are the generalized coordinates

represented in figure 19. Substituting the obtained values Uy = Ui(z)
end Up = Uy(z) in equation (6.5) we obtain

o1 = (+645P) + 223P, + 223P;)py (s) sin 22
o, = (-130P; + 380P, — 132P3)9,(s) sin Z& (6.6)

From the first of these equations are determined the normal stresses oy

referring to the bending of the shell as a beam (¢1 represents the

distance from the axis of symmebtry of the section to the point of the
contour.) The second of formulas (6.6) refers to the stresses arising
as a result of the deplanation of the section.

The maximm stresses o0; and o0p arise in the middle transverse
section (for z = %), P, P2’ P3 are the intensities of the transverse

loads in kilograms per meter. The gtresses o determined by formulas (6.6)
are obtained in kilograms per meter=. By comparing oy, 0p 1t follows

that the stresses a5 due to the bimoment are of the same order as the
stresses "oy due to the bending. Thus for example if the shell is
acted upon by only a single transverse load P,, then setting in

equation (6.6) P; = P3 = 0 we obtaln 1z =

o jeo

o] = 223P291(s), op = 38OP2@2(5) (6.7)

For the lower point =a of the intersection of the end vertical
plate with the inclined one according to figure 19 we shall have

01% = +223P,d = 223 X 0.5P, = 111.5P,

il

(in xg/m?) (6.8)

cf2a = —380P, % d = =380 x 0.14P5 = —53.3P,

|

The total stress at this point will be

o® = 58.2P, (in kg/uw?)
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It is seen from this example that the factor of deplanation of the
section is of essentlal significance. We may remark that from the
formula (6.6) for oo it follows that there exists a system of loads Pys

5. 23 for which deplanation of the section is abaent. These loads in
the‘g%van example are evidently connected by the relation

—130P; + 380P, — 132P; = 0 (6.9)

7. On the Principle of Saint—Venant in the Theory of Shells

Let the shell with the cross-section shown in figure 11 have the
dimengions

d] =dp=d, B =8,=25 (7.1)

The moments of inertia Jl and JE in the absence of ribs assume'the
values

_ 83

- (7.2)
12

where & 1is the thickness of the plates of the shell which in the
given case we assume the same. Further let I = 2G.

We consider an infinitely long shell and assume that at the initial
gection there is applied a system of longitudinal forces reducing to a
bimoment and therefore representing the balanced longitudinal load corre—
sponding to the deplanation of the section. The distribution of the
gtresses ¢ due to such load statically equivalent to zero over the
gection 2z = constant is defined by the antisymmetrical diagram shown
in figure 13. We assume Turther that the system of longitudinal forces
is such that the normal stress due to these forces at a Juncture point
of the cross—section is in absolute value equal to unity. The
tangentlal stresses at the initial section 3z = constant will be considered
equal to zero (fig. 21).

Setting in equations (5.5) p =2, p=q = 0, using the dimen—
sions (7.1), integrating these equations and remembering the above
boundary conditions at the intiel section z = 0 and the condition of
finiteness at z = o we obtain a definite solution for the infinitely
long shell of square section loaded at the initial section by a single
balanced longitudinal load.

In figure 22 are shown the graphs of the variation of the

t
magnitudes %f' proportional to the normel stress o = o(z) as a
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function of the position of the section along the shell. In figure 23
are gliven the graphs of the variation of the magnitude Vh/d2 propor—
tional to the transverse bending moment M and characterizing the
deformation of the contour of the shell. On these graphs along the
axls of abscissas are laid off the relative coordinates € = g- glving

the distance in fractions of the wldth of the plate d from the origin

z = O to the section 2z = constant under consideration. On the axls of
ordinates are laid off in figure 22 the values u'/d and on figure 23,

V'lf/d2 computed for different values of the ratio &/d4 of the thickness
of the plate to its width.

From the graphs for o = Eu' shown in figure 22, it is seen that
for a thickness of shell & = 0.01d +the normal stresses ¢ due to

the balanced longitudinal load do not have the character of local

gtresses and decrease very slowly with increasing distance from the

point of application of this load. Even at sections at a distance z = 84
from the initial section these stresses constituted 20 percent of the
given stress at the section z = 0. The rate of decrease depends on

the ratio 5/d. On increasing this ratio the rate of decrease increases.
This increase however does not occur rapidly enough for the stresses
determined by the fourth term of formula (5.1) and arising from the
deplanation of the section to have the character of local stresses.

For the case g-: 0.1 +the stresses o 1n the section =z = 2.70d still

remain appreciable.

From the example given it follows that the principle of Saint-
Venant, as already several times noted in our previous works (references 1
and h), has a restricted field of application in the theory of shells.
Thus, for example, for the shell here considered for % = 0.01 and for

a length not exceeding 15 to 20 times the width of a single plate the
stresses ¢ due to the balanced longitudinal load applied at both

ends of this shell, even at the middle cross—section at the greatest
distance from the ends of the shell constitute 25 to 30 percent of the
given stresses at the end sections z = 0, z = 1. Thus, in practical
problems the stresses due to the balanced longitudinal (or transverse)
loaa for thin shells of finite length will not be local stresses. The
principle of Saint—Venant applicable in a practical sense to dense bodies
can lead, on application to shells, as has been shown in our work on

" thin—walled rods, to false results. It follows that the elementary
theory of the bending of shells as beams represented by the first three
terms of the general law (5.1) and based essentially on the principle of
Saint—Venant is applicable to particular cases, namely, when the extermal
forces and the boundary conditions are such that the bimoment of the
longitudinal forces assoclated with the deplanation of the section is
equal to zero, that is in those cases where the system of equations (5.5)
has a zero solution. In the light of our discussion above, the principle
of Saint—Venant has a restricted field of application also in the theory
of shells. Thus if the closed circular cylindrical shell is subjected
at the sections z = 0, z = 1 +to_normal stresses varying along the
section according to the law cos“6 where 6 1is the central angle, and
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reducing therefore to a balanced longltudinal load, the stresses in the
center cross—section z 2— for a length of she:L‘L 1 = 20R and thick—

ness 5 = 0.01R (R 1is the radius of the circle) constitute, as shown

by the 1nvestigations of the author, from 40O to 50-percent-of the given

stresses at the end sections. With decrease in the thickness & of the
shell the stresses in the section 3z = 5 increase. In the case of a

ghell with zero moment the stresses over the entire length remain constant.
In the cylindrical or prismatic shell the stresses due to the balanced
longitudinal forces at each of the sections z = O, z = 1 have the
character of loca.l stresses only in the case of a sufficiently thick sheil

for § > == or 1f the thin shells for a thickness §<< L are reinforced

30 ? 30
over the length by sufficlently rigid ribs.

The problem brought out above connected with the principle of
Saint-Venant can be easily investigated with the aid of equations (5.5)
by varying in these equations the magnitudes Jq, Jé repregenting for

a ribbed shell mean (referring to unit length) reduced moments of inertia
of the longitudinal sections of the shell. With increase in the mean
bending stifinesses EJ; and EJ2 of the elements of the transverse

closed frame the rate of decrease of the stresses due to the longitudinal
balanced load increases. For EJ; = EJo = o, that is in the case of a

shell with rigid contour, the additional stresses connected with the
deviation from the hypothesis of plane sections for longitudinal balanced
load will have a local character. This remark refers to shells of

closed profile. In the case of shells and thin—walled rods of open
profile the stresses due to the bimoment, even in the absence of
deformation of the contour of the section, extend over a considerable
part of the length of the shell and do not have the character of "local'
stresses.

8. General Theory of the Vibrations of Prismatic
Multiply—-Connected Shells

The general differential equations (2.11) for the coefficients of
these equations (2.13) and free terms (2.15) refer to the problem of the
equilibrium of thin-walled spatlal multiply-connected prismavic shell.
These equations are generalized also to the theory of the vibration of
such shells. For this it is necessary in equations (2.11) to understand
by the forces Py and a, inertia forces arising from the vibrations

of the shell for given forms, with an accuracy up to & certain number of
parameters, of the longitudinal and transverse displacements.

Considering the displacements u and v of any point of the
surface of the shell as a function of three independent variables =z, s, t
where t 1is the time, ¥ 1s the weight of unit volume of the material,
and g +the acceleration of gravity, we can write
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_ 2n 2
p--23 q=-L3T (8.1)
8 3t € 3t

Q/

From the above formulas are determined the surface inertia forces, that
is the forces referred to unit surface area. These forces act as
follows: P in the direction of the generator, and G in the direction
of the tangent to the contour line of the tangent to the contour line

of the cross-section. Setting, according to equations (1.1) and (1.2)

u = Uy(z,t)p;(s) (1 =1,2,...,m), v= Vk(z,t)\lfk(s) (k =1,2,..., m)
(8.2)

Substituting these values in (8.1) and computing the free terms of the
equations (2.11) by formulas (2.15) we obtain

2

Y -9
b,(z,8) = - g‘igj_ggg 0y(2,6) [ 04(a) 0y(a) ar
(8.3)
an(z,8) = - —}: - Ve(z,8) [ (sl (s) aF
Or teking into account formulas (2.13)
.2
p,(z t)_—-Tajl“ _U(z t)  (1=1,2,..., m)
(8.%)
2
q,(z,t) = éﬁ” - Sjc-gvk(z,t) (k =1,2,..., n)

Equations (2.11) in the case of the dynamic problem will have the form

E n Y < o 1
G zi:adi i = zi: inUi T g :i__aJiUi - , Vk + §,PJ° =0
(8.5)

e T By 2 1,0_
S CpgUit N Ve & ;E:jdhkvk " N TVy + S - 0
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where the derivatives with respect to the coordinate =z are denoted by
primes and those with respect to the time + by dots, pd = D, Az,t),

h qho(z t) denocte the generalized extermsl longitudinal and

transverse forces considered as functions of z "and t and computed by
formulas (2.15). If these forces are absent we have homogeneous equations
in partial derivatives referring to the free vibrations of shells. These
vibrations, as 1s seen from equations (8.5), will be harmonic.

Usling the method of the separation of variables we obtain a system
of homogeneous ordinary linear symmetricel differential equations with a
parameter determining the frequency of the natural vibrations of the
shell. With these differential equations and the associated homogeneous
statical, kinematic, or mixed boundary .conditions (depending on the
ch&racter of the problem), the frequency and the form of the vibrations
of the mmltiply—connected shell are determined as of a spatial,
discretely continuous system, the cross—sections of which do not remain
plane.

If the boundary conditions are such that for z = 0, z=1

U'=0 (i=1,2,...5m), V=0 (k=1,2,...,n) (8.6)

the fundamsntal functions of the hamogeneous differential equations
will be

VRZ . VZ
Uiv(z,t) = Ay cos = sin wt, Vkv(th) = By sin - sin wt (8.7)

Substituting (8.7) in equetions (8.5) we obtain with pJo = q° =0
for Ay, Bk a symmetrical system of homogeneous differential algebraic

equations. Equating the determinant of this system to zero we obtain the
characteristic equation for the frequency of vibrations . Since the
initial equations are symmetrical all the frequencies of vibration will
always have real values independently of the shape of contour of the
shell cross—section.

The investigations conducted by the author on the vibrations of
thin-walled rods and shelle show that the fundamental frequency of
vibration will always be below that frequency which is obtained on the
basis of the existing elementary theory of Rayleigh. In particular,
for a shell of the type of a wing of an airplane, this frequency obtained
on the basis of the theory here developed may be 3 to 4 times below the
frequency obtained from the usual computation.



38 _ NACA TM 1234

9. General Remarks

The method here developed cen be used to obtaln the solution of the
plane problem of the theory of elastlclity for a rectangular region. Thus,
for example, for the case of the plane parallel state of the rectangular
plate the biharmonic problem leads to a system of symmetrically constructed
ordinary differential equations

1-—-v 1 -v2
+ E Vit v\jpw fp, dF — Jﬂ& P4t d%) + ————1p, =0
k k< kT 2 k™ 0B 9

1l—-v 1- "
- }i:Uir (Vf‘Pi‘Vh' aF — = fq)i"l’h dF> = v %—_vk f‘l’k‘lfh aF (9.1)

- kaﬁrkwh' R N L
Xk 2E

(1,3 =1,2,00., m; k,h=1,2,..., n)

where v 1s the Poisson coefficient, Uy = U,(z) (i-=1,2,... m),

Vi = Vi(z) (k= 1,2,... n) are the required generalized longitudinal
and trensverse displacements respectively, @; = @;(s) (1 =1,2,..., M),

¥ = ¥ (8) (k= 1,2,..., n) are given functions depending on the

position of the point along the width of the plates and determining
according to equation (1.1) the astate of the longitudinal and transverse
displacements over the section z = constent. Ths functions ¢, (s)

and wk(s) on the longitudinal edges of the plates must satisfy only

the kinematic conditions. In choosing these functions the rectangular
plate can be divided along its width by a number of narrow strips and
within the limits of each such strip the assumption of linsar distribution
of the longltudinal and transverse displacements can be made within the
limits of the width of a strip. In the particular case of m=1, n=1
we obtain a system of two differential equations of the second order.
These equations for @ = V¥, = s and for the coordinate s measured
from the center point of the width of the plate will refer to the case

of the bending of a plate. If the coordinate s is measured from the
lower edge of the plate, then for ¢ = Wl = & we shall have equations
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referring to a narrow rectangulsr plate which over its entire lower edge
is rigldly fixed against verticel and horizontal displacements, etc.

e - We may. remark, that, in contrast to equations (2.11), equations (9.1)
were obtained with account taken of the tensilée deformations of the plate
over its width. Equations (9.1) in agreement with what was said above
represent the generalized equationes of the theory of bending of beams
and make possible the sclution of & number of problems. To such problems
for exemple belong the contact problem on the computetion of a beam
lying on an elastic base not following the hypothesis of Winkler, the
problem of the local stresses in a narrow plate loaded by two concentrated
forces applied on one vertical along the longitudinal edges of the plate
and directed toward various sides, etc.

For the cylindrical shell of arbitrary contour the differential
equations in the variables u = u(z,s), v = v(z,s), 1in accordance with
the assumptions here made for & = constant have the form

2 2
5u+G82u+G8v

E
3z ds2 dDds

+P=0 (9.2)

2 2 o) 2 2
G-a LI G-a LA o <%—-R o _ + 1o é—---R ov + oY + Q=20
dzds dz2  12(1 - v2) \O98 32 R Is R

where P and Q are terms depending on the surface load, R = R(s) is
the radius of curvature. Equations (9.2) in contrast to the equations
of Love have a symmetrical structure. It is not difficult to show that
if the cylindrical shell is considered as prismatic and the number of
sides is increased to infinity the system (2.11) in the limit passes
over into the equations (9.2). Equations (9.2) can be integrated by the
method of the separation of variables. Setting (for P = Q = 0)

u = Z(z)@(s), v = Z¥(z)Ws), Z" = A%z(z) (9.3)
where Xg is an undetermined multiplier, we obtain

E\°p + Go" + Gyt = O

¥

o8

82 a4 _a 1a)\la? d
1 _ (& s o Llglle Yt
ot + O +12(1—v2)<dst52 "Ry g2 @ TasR|° (9-4)
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The parameter A 1is found by solving the corresponding homogeneous
boundary problem described by the equations (9.#8 and the homogeneous
boundary conditions on the rectangular edges of the shell. In the case
of a shell with rigid contour the problem reduces to the integration of
the equations

8(0’5) B(TS) _ .l ao'_la’l’ n.g n_g n g _
az +as _OJ Eas Gaz+§x+ﬂ5’+9w—0 (9-5)
for the additional integral conditions
2 2
o ar 1o, [ ¢ ar ] _
\/ﬂaze x dF + gx + [;z x] = 0, 8z2 y dF + qy + [dz ] = 0
(9.6)

2
JFQ_E wdF +m+ [EE ] =0
Bz2 fdz

In equations (9.5) &t = &(z), n = n(z), and 6 = 6(z) are respectively
the deflections and sngle of torsion, x = x(e), y = y(&), ® = w(s) are
respectively the cartesian coordinates and the sectorial area. In
equations (9.6) the integrals are taken over the entire contour of the
section for the variable dF = dds, T = T(z) denoting the shearing
force.

Translation by S. Reiss
National Advisory Committee
for Aeronautics
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